Metamath Proof Explorer


Theorem rexbidvALT

Description: Alternate proof of rexbidv , shorter but requires more axioms. (Contributed by NM, 20-Nov-1994) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis rexbidvALT.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rexbidvALT ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexbidvALT.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 nfv 𝑥 𝜑
3 2 1 rexbid ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )