Metamath Proof Explorer


Theorem rexbidvaALT

Description: Alternate proof of rexbidva , shorter but requires more axioms. (Contributed by NM, 9-Mar-1997) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis rexbidvaALT.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexbidvaALT ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexbidvaALT.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 nfv 𝑥 𝜑
3 2 1 rexbida ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )