Metamath Proof Explorer


Theorem rexbii2

Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004)

Ref Expression
Hypothesis rexbii2.1 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜓 ) )
Assertion rexbii2 ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rexbii2.1 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜓 ) )
2 1 exbii ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝜓 ) )
3 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
4 df-rex ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐵𝜓 ) )
5 2 3 4 3bitr4i ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜓 )