Metamath Proof Explorer


Theorem rexbiia

Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999)

Ref Expression
Hypothesis rexbiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion rexbiia ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 rexbiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 pm5.32i ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴𝜓 ) )
3 2 rexbii2 ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 𝜓 )