Metamath Proof Explorer


Theorem rexcom13

Description: Swap first and third restricted existential quantifiers. (Contributed by NM, 8-Apr-2015)

Ref Expression
Assertion rexcom13 ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃ 𝑧𝐶𝑦𝐵𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rexcom ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃ 𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 )
2 rexcom ( ∃ 𝑥𝐴𝑧𝐶 𝜑 ↔ ∃ 𝑧𝐶𝑥𝐴 𝜑 )
3 2 rexbii ( ∃ 𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 ↔ ∃ 𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 )
4 rexcom ( ∃ 𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 ↔ ∃ 𝑧𝐶𝑦𝐵𝑥𝐴 𝜑 )
5 1 3 4 3bitri ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃ 𝑧𝐶𝑦𝐵𝑥𝐴 𝜑 )