Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | rexcom4a | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) | |
2 | 19.42v | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) | |
3 | 2 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |
4 | 1 3 | bitr3i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |