Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
⊢ ( 𝐴 ≈ suc 𝑀 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) |
2 |
|
19.42v |
⊢ ( ∃ 𝑓 ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) ↔ ( 𝑀 ∈ ω ∧ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) ) |
3 |
|
sucidg |
⊢ ( 𝑀 ∈ ω → 𝑀 ∈ suc 𝑀 ) |
4 |
|
f1ocnvdm |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) |
5 |
4
|
ancoms |
⊢ ( ( 𝑀 ∈ suc 𝑀 ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) |
6 |
3 5
|
sylan |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) |
7 |
|
vex |
⊢ 𝑓 ∈ V |
8 |
|
dif1enlem |
⊢ ( ( 𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) |
9 |
7 8
|
mp3an1 |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) |
10 |
|
sneq |
⊢ ( 𝑥 = ( ◡ 𝑓 ‘ 𝑀 ) → { 𝑥 } = { ( ◡ 𝑓 ‘ 𝑀 ) } ) |
11 |
10
|
difeq2d |
⊢ ( 𝑥 = ( ◡ 𝑓 ‘ 𝑀 ) → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ) |
12 |
11
|
breq1d |
⊢ ( 𝑥 = ( ◡ 𝑓 ‘ 𝑀 ) → ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ↔ ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) ) |
13 |
12
|
rspcev |
⊢ ( ( ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ∧ ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
14 |
6 9 13
|
syl2anc |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
15 |
14
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
16 |
2 15
|
sylbir |
⊢ ( ( 𝑀 ∈ ω ∧ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
17 |
1 16
|
sylan2b |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |