Metamath Proof Explorer


Theorem rexdif1en

Description: If a set is equinumerous to a nonzero finite ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024)

Ref Expression
Assertion rexdif1en ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 )

Proof

Step Hyp Ref Expression
1 bren ( 𝐴 ≈ suc 𝑀 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto→ suc 𝑀 )
2 19.42v ( ∃ 𝑓 ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) ↔ ( 𝑀 ∈ ω ∧ ∃ 𝑓 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) )
3 sucidg ( 𝑀 ∈ ω → 𝑀 ∈ suc 𝑀 )
4 f1ocnvdm ( ( 𝑓 : 𝐴1-1-onto→ suc 𝑀𝑀 ∈ suc 𝑀 ) → ( 𝑓𝑀 ) ∈ 𝐴 )
5 4 ancoms ( ( 𝑀 ∈ suc 𝑀𝑓 : 𝐴1-1-onto→ suc 𝑀 ) → ( 𝑓𝑀 ) ∈ 𝐴 )
6 3 5 sylan ( ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) → ( 𝑓𝑀 ) ∈ 𝐴 )
7 vex 𝑓 ∈ V
8 dif1enlem ( ( 𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( 𝑓𝑀 ) } ) ≈ 𝑀 )
9 7 8 mp3an1 ( ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( 𝑓𝑀 ) } ) ≈ 𝑀 )
10 sneq ( 𝑥 = ( 𝑓𝑀 ) → { 𝑥 } = { ( 𝑓𝑀 ) } )
11 10 difeq2d ( 𝑥 = ( 𝑓𝑀 ) → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { ( 𝑓𝑀 ) } ) )
12 11 breq1d ( 𝑥 = ( 𝑓𝑀 ) → ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ↔ ( 𝐴 ∖ { ( 𝑓𝑀 ) } ) ≈ 𝑀 ) )
13 12 rspcev ( ( ( 𝑓𝑀 ) ∈ 𝐴 ∧ ( 𝐴 ∖ { ( 𝑓𝑀 ) } ) ≈ 𝑀 ) → ∃ 𝑥𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 )
14 6 9 13 syl2anc ( ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) → ∃ 𝑥𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 )
15 14 exlimiv ( ∃ 𝑓 ( 𝑀 ∈ ω ∧ 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) → ∃ 𝑥𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 )
16 2 15 sylbir ( ( 𝑀 ∈ ω ∧ ∃ 𝑓 𝑓 : 𝐴1-1-onto→ suc 𝑀 ) → ∃ 𝑥𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 )
17 1 16 sylan2b ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 )