| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bren | ⊢ ( 𝐴  ≈  suc  𝑀  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc  𝑀 ) | 
						
							| 2 |  | 19.42v | ⊢ ( ∃ 𝑓 ( 𝑀  ∈  ω  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  ↔  ( 𝑀  ∈  ω  ∧  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc  𝑀 ) ) | 
						
							| 3 |  | sucidg | ⊢ ( 𝑀  ∈  ω  →  𝑀  ∈  suc  𝑀 ) | 
						
							| 4 |  | f1ocnvdm | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc  𝑀  ∧  𝑀  ∈  suc  𝑀 )  →  ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴 ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝑀  ∈  suc  𝑀  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴 ) | 
						
							| 6 | 3 5 | sylan | ⊢ ( ( 𝑀  ∈  ω  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴 ) | 
						
							| 7 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 8 |  | dif1enlemOLD | ⊢ ( ( 𝑓  ∈  V  ∧  𝑀  ∈  ω  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 ) | 
						
							| 9 | 7 8 | mp3an1 | ⊢ ( ( 𝑀  ∈  ω  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 ) | 
						
							| 10 |  | sneq | ⊢ ( 𝑥  =  ( ◡ 𝑓 ‘ 𝑀 )  →  { 𝑥 }  =  { ( ◡ 𝑓 ‘ 𝑀 ) } ) | 
						
							| 11 | 10 | difeq2d | ⊢ ( 𝑥  =  ( ◡ 𝑓 ‘ 𝑀 )  →  ( 𝐴  ∖  { 𝑥 } )  =  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( 𝑥  =  ( ◡ 𝑓 ‘ 𝑀 )  →  ( ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀  ↔  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 ) ) | 
						
							| 13 | 12 | rspcev | ⊢ ( ( ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴  ∧  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 14 | 6 9 13 | syl2anc | ⊢ ( ( 𝑀  ∈  ω  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑀  ∈  ω  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 16 | 2 15 | sylbir | ⊢ ( ( 𝑀  ∈  ω  ∧  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 17 | 1 16 | sylan2b | ⊢ ( ( 𝑀  ∈  ω  ∧  𝐴  ≈  suc  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) |