Metamath Proof Explorer


Theorem rexdifpr

Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018) (Proof shortened by Wolf Lammen, 15-May-2025)

Ref Expression
Assertion rexdifpr ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) 𝜑 ↔ ∃ 𝑥𝐴 ( 𝑥𝐵𝑥𝐶𝜑 ) )

Proof

Step Hyp Ref Expression
1 anass ( ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( ( 𝑥𝐵𝑥𝐶 ) ∧ 𝜑 ) ) )
2 eldifpr ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ↔ ( 𝑥𝐴𝑥𝐵𝑥𝐶 ) )
3 3anass ( ( 𝑥𝐴𝑥𝐵𝑥𝐶 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) )
4 2 3 bitri ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) )
5 4 anbi1i ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) ∧ 𝜑 ) )
6 df-3an ( ( 𝑥𝐵𝑥𝐶𝜑 ) ↔ ( ( 𝑥𝐵𝑥𝐶 ) ∧ 𝜑 ) )
7 6 anbi2i ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶𝜑 ) ) ↔ ( 𝑥𝐴 ∧ ( ( 𝑥𝐵𝑥𝐶 ) ∧ 𝜑 ) ) )
8 1 5 7 3bitr4i ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶𝜑 ) ) )
9 8 rexbii2 ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) 𝜑 ↔ ∃ 𝑥𝐴 ( 𝑥𝐵𝑥𝐶𝜑 ) )