Metamath Proof Explorer


Theorem rexdifpr

Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018)

Ref Expression
Assertion rexdifpr ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) 𝜑 ↔ ∃ 𝑥𝐴 ( 𝑥𝐵𝑥𝐶𝜑 ) )

Proof

Step Hyp Ref Expression
1 eldifpr ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ↔ ( 𝑥𝐴𝑥𝐵𝑥𝐶 ) )
2 3anass ( ( 𝑥𝐴𝑥𝐵𝑥𝐶 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) )
3 1 2 bitri ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) )
4 3 anbi1i ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) ∧ 𝜑 ) )
5 anass ( ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( ( 𝑥𝐵𝑥𝐶 ) ∧ 𝜑 ) ) )
6 df-3an ( ( 𝑥𝐵𝑥𝐶𝜑 ) ↔ ( ( 𝑥𝐵𝑥𝐶 ) ∧ 𝜑 ) )
7 6 bicomi ( ( ( 𝑥𝐵𝑥𝐶 ) ∧ 𝜑 ) ↔ ( 𝑥𝐵𝑥𝐶𝜑 ) )
8 7 anbi2i ( ( 𝑥𝐴 ∧ ( ( 𝑥𝐵𝑥𝐶 ) ∧ 𝜑 ) ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶𝜑 ) ) )
9 5 8 bitri ( ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶𝜑 ) ) )
10 4 9 bitri ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶𝜑 ) ) )
11 10 rexbii2 ( ∃ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) 𝜑 ↔ ∃ 𝑥𝐴 ( 𝑥𝐵𝑥𝐶𝜑 ) )