Metamath Proof Explorer


Theorem rexeqOLD

Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion rexeqOLD ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 biidd ( 𝐴 = 𝐵 → ( 𝜑𝜑 ) )
2 1 rexeqbi1dv ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )