Metamath Proof Explorer


Theorem rexeqbidva

Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017)

Ref Expression
Hypotheses raleqbidva.1 ( 𝜑𝐴 = 𝐵 )
raleqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexeqbidva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 raleqbidva.1 ( 𝜑𝐴 = 𝐵 )
2 raleqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 rexbidva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )
4 1 rexeqdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜒 ↔ ∃ 𝑥𝐵 𝜒 ) )
5 3 4 bitrd ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 ) )