Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
raleqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | rexeqbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | raleqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 2 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
4 | 1 | rexeqdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜒 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |