Metamath Proof Explorer


Theorem rexeqbidvv

Description: Version of rexeqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by Wolf Lammen, 25-Sep-2024)

Ref Expression
Hypotheses raleqbidvv.1 ( 𝜑𝐴 = 𝐵 )
raleqbidvv.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rexeqbidvv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 raleqbidvv.1 ( 𝜑𝐴 = 𝐵 )
2 raleqbidvv.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 notbid ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
4 1 3 raleqbidvv ( 𝜑 → ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ∀ 𝑥𝐵 ¬ 𝜒 ) )
5 ralnex ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥𝐴 𝜓 )
6 ralnex ( ∀ 𝑥𝐵 ¬ 𝜒 ↔ ¬ ∃ 𝑥𝐵 𝜒 )
7 4 5 6 3bitr3g ( 𝜑 → ( ¬ ∃ 𝑥𝐴 𝜓 ↔ ¬ ∃ 𝑥𝐵 𝜒 ) )
8 7 con4bid ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 ) )