Description: Version of rexeqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by Wolf Lammen, 25-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqbidvv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
raleqbidvv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | rexeqbidvv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidvv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | raleqbidvv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 2 | notbid | ⊢ ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
4 | 1 3 | raleqbidvv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝜒 ) ) |
5 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
6 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ 𝜒 ↔ ¬ ∃ 𝑥 ∈ 𝐵 𝜒 ) | |
7 | 4 5 6 | 3bitr3g | ⊢ ( 𝜑 → ( ¬ ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
8 | 7 | con4bid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |