Metamath Proof Explorer


Theorem rexeqbii

Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses rexeqbii.1 𝐴 = 𝐵
rexeqbii.2 ( 𝜓𝜒 )
Assertion rexeqbii ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 )

Proof

Step Hyp Ref Expression
1 rexeqbii.1 𝐴 = 𝐵
2 rexeqbii.2 ( 𝜓𝜒 )
3 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
4 3 2 anbi12i ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) )
5 4 rexbii2 ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 )