Metamath Proof Explorer


Theorem rexeqdv

Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007)

Ref Expression
Hypothesis raleq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion rexeqdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 raleq1d.1 ( 𝜑𝐴 = 𝐵 )
2 rexeq ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜓 ) )
3 1 2 syl ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜓 ) )