Metamath Proof Explorer
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007)
|
|
Ref |
Expression |
|
Hypothesis |
raleq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raleq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
rexeq |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |