Metamath Proof Explorer


Theorem rexeqf

Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003) (Revised by Andrew Salmon, 11-Jul-2011)

Ref Expression
Hypotheses raleq1f.1 𝑥 𝐴
raleq1f.2 𝑥 𝐵
Assertion rexeqf ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 raleq1f.1 𝑥 𝐴
2 raleq1f.2 𝑥 𝐵
3 1 2 nfeq 𝑥 𝐴 = 𝐵
4 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
5 4 anbi1d ( 𝐴 = 𝐵 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜑 ) ) )
6 3 5 exbid ( 𝐴 = 𝐵 → ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) ) )
7 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
8 df-rex ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
9 6 7 8 3bitr4g ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )