Metamath Proof Explorer


Theorem rexeqfOLD

Description: Obsolete version of rexeqf as of 9-Mar-2025. (Contributed by NM, 9-Oct-2003) (Revised by Andrew Salmon, 11-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses raleqf.1 𝑥 𝐴
raleqf.2 𝑥 𝐵
Assertion rexeqfOLD ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 raleqf.1 𝑥 𝐴
2 raleqf.2 𝑥 𝐵
3 1 2 nfeq 𝑥 𝐴 = 𝐵
4 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
5 4 anbi1d ( 𝐴 = 𝐵 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜑 ) ) )
6 3 5 exbid ( 𝐴 = 𝐵 → ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) ) )
7 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
8 df-rex ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
9 6 7 8 3bitr4g ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )