Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleq1i.1 | ⊢ 𝐴 = 𝐵 | |
Assertion | rexeqi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | ⊢ 𝐴 = 𝐵 | |
2 | rexeq | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) |