Metamath Proof Explorer


Theorem rexeqi

Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis raleq1i.1 𝐴 = 𝐵
Assertion rexeqi ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 raleq1i.1 𝐴 = 𝐵
2 rexeq ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )
3 1 2 ax-mp ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 )