Metamath Proof Explorer


Theorem rexeqtrdv

Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses rexeqtrdv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
rexeqtrdv.2 ( 𝜑𝐴 = 𝐵 )
Assertion rexeqtrdv ( 𝜑 → ∃ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rexeqtrdv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
2 rexeqtrdv.2 ( 𝜑𝐴 = 𝐵 )
3 2 rexeqdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜓 ) )
4 1 3 mpbid ( 𝜑 → ∃ 𝑥𝐵 𝜓 )