Metamath Proof Explorer


Theorem rexeqtrrdv

Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses rexeqtrrdv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
rexeqtrrdv.2 ( 𝜑𝐵 = 𝐴 )
Assertion rexeqtrrdv ( 𝜑 → ∃ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rexeqtrrdv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
2 rexeqtrrdv.2 ( 𝜑𝐵 = 𝐴 )
3 2 rexeqdv ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑥𝐴 𝜓 ) )
4 1 3 mpbird ( 𝜑 → ∃ 𝑥𝐵 𝜓 )