Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | rexex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | exsimpr | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝜑 ) | |
3 | 1 2 | sylbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 𝜑 ) |