Metamath Proof Explorer


Theorem rexim

Description: Theorem 19.22 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion rexim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 con3 ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )
2 1 ral2imi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 ¬ 𝜓 → ∀ 𝑥𝐴 ¬ 𝜑 ) )
3 2 con3d ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 → ¬ ∀ 𝑥𝐴 ¬ 𝜓 ) )
4 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
5 dfrex2 ( ∃ 𝑥𝐴 𝜓 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜓 )
6 3 4 5 3imtr4g ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )