Metamath Proof Explorer


Theorem reximdd

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses reximdd.1 𝑥 𝜑
reximdd.2 ( ( 𝜑𝑥𝐴𝜓 ) → 𝜒 )
reximdd.3 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
Assertion reximdd ( 𝜑 → ∃ 𝑥𝐴 𝜒 )

Proof

Step Hyp Ref Expression
1 reximdd.1 𝑥 𝜑
2 reximdd.2 ( ( 𝜑𝑥𝐴𝜓 ) → 𝜒 )
3 reximdd.3 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
4 2 3exp ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
5 1 4 reximdai ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )
6 3 5 mpd ( 𝜑 → ∃ 𝑥𝐴 𝜒 )