Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reximddva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) | |
reximddva.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | ||
Assertion | reximddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) | |
2 | reximddva.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
3 | 1 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) |
4 | 3 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
5 | 2 4 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |