Metamath Proof Explorer


Theorem reximddv

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses reximddva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜒 )
reximddva.2 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
Assertion reximddv ( 𝜑 → ∃ 𝑥𝐴 𝜒 )

Proof

Step Hyp Ref Expression
1 reximddva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜒 )
2 reximddva.2 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
3 1 expr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
4 3 reximdva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )
5 2 4 mpd ( 𝜑 → ∃ 𝑥𝐴 𝜒 )