Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reximddva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) | |
| reximddva.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | ||
| Assertion | reximddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) | |
| 2 | reximddva.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
| 3 | 1 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) |
| 4 | 3 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 5 | 2 4 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |