Description: Double deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reximddv2.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → 𝜒 ) | |
reximddv2.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) | ||
Assertion | reximddv2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddv2.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → 𝜒 ) | |
2 | reximddv2.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) | |
3 | 1 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) |
4 | 3 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
5 | 4 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) → ∃ 𝑦 ∈ 𝐵 𝜒 ) |
6 | 5 2 | reximddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) |