Metamath Proof Explorer


Theorem reximddv2

Description: Double deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses reximddv2.1 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
reximddv2.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
Assertion reximddv2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )

Proof

Step Hyp Ref Expression
1 reximddv2.1 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
2 reximddv2.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
3 1 ex ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → ( 𝜓𝜒 ) )
4 3 reximdva ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑦𝐵 𝜓 → ∃ 𝑦𝐵 𝜒 ) )
5 4 impr ( ( 𝜑 ∧ ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 𝜓 ) ) → ∃ 𝑦𝐵 𝜒 )
6 5 2 reximddv ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )