Metamath Proof Explorer


Theorem reximddv3

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses reximddv3.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
reximddv3.2 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
Assertion reximddv3 ( 𝜑 → ∃ 𝑥𝐴 𝜒 )

Proof

Step Hyp Ref Expression
1 reximddv3.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
2 reximddv3.2 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
3 1 anasss ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜒 )
4 3 2 reximddv ( 𝜑 → ∃ 𝑥𝐴 𝜒 )