Metamath Proof Explorer
Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
reximddv3.1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
|
|
reximddv3.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
|
Assertion |
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reximddv3.1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
2 |
|
reximddv3.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
3 |
1
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) |
4 |
3 2
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |