Metamath Proof Explorer


Theorem reximdva0

Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012)

Ref Expression
Hypothesis reximdva0.1 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
Assertion reximdva0 ( ( 𝜑𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 reximdva0.1 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
2 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
3 1 ex ( 𝜑 → ( 𝑥𝐴𝜓 ) )
4 3 ancld ( 𝜑 → ( 𝑥𝐴 → ( 𝑥𝐴𝜓 ) ) )
5 4 eximdv ( 𝜑 → ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥 ( 𝑥𝐴𝜓 ) ) )
6 5 imp ( ( 𝜑 ∧ ∃ 𝑥 𝑥𝐴 ) → ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
7 2 6 sylan2b ( ( 𝜑𝐴 ≠ ∅ ) → ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
8 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
9 7 8 sylibr ( ( 𝜑𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 𝜓 )