Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reximdva0.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) | |
| Assertion | reximdva0 | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdva0.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) | |
| 2 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 3 | 1 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
| 4 | 3 | ancld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 5 | 4 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝜑 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 7 | 2 6 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 8 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 𝜓 ) |