Metamath Proof Explorer


Theorem reximdvaiOLD

Description: Obsolete version of reximdvai as of 3-Nov-2024. (Contributed by NM, 14-Nov-2002) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis reximdvai.1 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
Assertion reximdvaiOLD ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reximdvai.1 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
2 1 ralrimiv ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
3 rexim ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )
4 2 3 syl ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )