Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by AV, 5-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
| Assertion | reximdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) |
| 3 | 2 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
| 4 | 3 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |