Metamath Proof Explorer
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996)
|
|
Ref |
Expression |
|
Hypothesis |
ralimi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
Assertion |
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralimi.1 |
⊢ ( 𝜑 → 𝜓 ) |
| 2 |
1
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
| 3 |
2
|
reximia |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |