Metamath Proof Explorer


Theorem reximi2

Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 8-Nov-2004)

Ref Expression
Hypothesis reximi2.1 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜓 ) )
Assertion reximi2 ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 reximi2.1 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜓 ) )
2 1 eximi ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) → ∃ 𝑥 ( 𝑥𝐵𝜓 ) )
3 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
4 df-rex ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐵𝜓 ) )
5 2 3 4 3imtr4i ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐵 𝜓 )