Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 8-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reximi2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
Assertion | reximi2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
2 | 1 | eximi | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
4 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
5 | 2 3 4 | 3imtr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) |