Metamath Proof Explorer


Theorem reximia

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypothesis reximia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion reximia ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 reximia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 imdistani ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) )
3 2 reximi2 ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 )