Metamath Proof Explorer


Theorem reximiaOLD

Description: Obsolete version of reximia as of 31-Oct-2024. (Contributed by NM, 10-Feb-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis reximia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion reximiaOLD ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 reximia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 rexim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
3 2 1 mprg ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 )