Metamath Proof Explorer


Theorem reximssdv

Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies A C_ B ), deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses reximssdv.1 ( 𝜑 → ∃ 𝑥𝐵 𝜓 )
reximssdv.2 ( ( 𝜑 ∧ ( 𝑥𝐵𝜓 ) ) → 𝑥𝐴 )
reximssdv.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝜓 ) ) → 𝜒 )
Assertion reximssdv ( 𝜑 → ∃ 𝑥𝐴 𝜒 )

Proof

Step Hyp Ref Expression
1 reximssdv.1 ( 𝜑 → ∃ 𝑥𝐵 𝜓 )
2 reximssdv.2 ( ( 𝜑 ∧ ( 𝑥𝐵𝜓 ) ) → 𝑥𝐴 )
3 reximssdv.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝜓 ) ) → 𝜒 )
4 2 3 jca ( ( 𝜑 ∧ ( 𝑥𝐵𝜓 ) ) → ( 𝑥𝐴𝜒 ) )
5 4 ex ( 𝜑 → ( ( 𝑥𝐵𝜓 ) → ( 𝑥𝐴𝜒 ) ) )
6 5 reximdv2 ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 → ∃ 𝑥𝐴 𝜒 ) )
7 1 6 mpd ( 𝜑 → ∃ 𝑥𝐴 𝜒 )