Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies A C_ B ), deduction form. (Contributed by AV, 21-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reximssdv.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) | |
reximssdv.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) → 𝑥 ∈ 𝐴 ) | ||
reximssdv.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) → 𝜒 ) | ||
Assertion | reximssdv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximssdv.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) | |
2 | reximssdv.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) → 𝑥 ∈ 𝐴 ) | |
3 | reximssdv.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) → 𝜒 ) | |
4 | 2 3 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
5 | 4 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
6 | 5 | reximdv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
7 | 1 6 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜒 ) |