Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rexin | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ) |
3 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
4 | 2 3 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
5 | 4 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |