Metamath Proof Explorer


Theorem rexin

Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018)

Ref Expression
Assertion rexin ( ∃ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∃ 𝑥𝐴 ( 𝑥𝐵𝜑 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
2 1 anbi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) )
3 anass ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜑 ) ) )
4 2 3 bitri ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜑 ) ) )
5 4 rexbii2 ( ∃ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∃ 𝑥𝐴 ( 𝑥𝐵𝜑 ) )