Step |
Hyp |
Ref |
Expression |
1 |
|
ralxp.1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
notbid |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
3 |
2
|
raliunxp |
⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ) |
4 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
6 |
3 5
|
bitri |
⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
7 |
6
|
notbii |
⊢ ( ¬ ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
8 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ¬ ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ) |
9 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ) |