Metamath Proof Explorer


Theorem rexiunxp

Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp , B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis ralxp.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
Assertion rexiunxp ( ∃ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∃ 𝑦𝐴𝑧𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxp.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
2 1 notbid ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 raliunxp ( ∀ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵 ¬ 𝜓 )
4 ralnex ( ∀ 𝑧𝐵 ¬ 𝜓 ↔ ¬ ∃ 𝑧𝐵 𝜓 )
5 4 ralbii ( ∀ 𝑦𝐴𝑧𝐵 ¬ 𝜓 ↔ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
6 3 5 bitri ( ∀ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
7 6 notbii ( ¬ ∀ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ¬ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
8 dfrex2 ( ∃ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ¬ ∀ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 )
9 dfrex2 ( ∃ 𝑦𝐴𝑧𝐵 𝜓 ↔ ¬ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
10 7 8 9 3bitr4i ( ∃ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∃ 𝑦𝐴𝑧𝐵 𝜓 )