Metamath Proof Explorer


Theorem rexlimd

Description: Deduction form of rexlimd . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 14-Jan-2020)

Ref Expression
Hypotheses rexlimd.1 𝑥 𝜑
rexlimd.2 𝑥 𝜒
rexlimd.3 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
Assertion rexlimd ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimd.1 𝑥 𝜑
2 rexlimd.2 𝑥 𝜒
3 rexlimd.3 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
4 2 a1i ( 𝜑 → Ⅎ 𝑥 𝜒 )
5 1 4 3 rexlimd2 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )