Description: Version of rexlimd with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013) (Revised by Mario Carneiro, 8-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexlimd2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rexlimd2.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
| rexlimd2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | ||
| Assertion | rexlimd2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rexlimd2.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
| 3 | rexlimd2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | |
| 4 | 1 3 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) |
| 5 | r19.23t | ⊢ ( Ⅎ 𝑥 𝜒 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |