Metamath Proof Explorer
Description: * Inference from Theorem 19.23 of Margaris p. 90 (restricted
quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
rexlimd3.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
rexlimd3.2 |
⊢ Ⅎ 𝑥 𝜒 |
|
|
rexlimd3.3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
rexlimd3 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexlimd3.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
rexlimd3.2 |
⊢ Ⅎ 𝑥 𝜒 |
3 |
|
rexlimd3.3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
4 |
3
|
exp31 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) |
5 |
1 2 4
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |