Metamath Proof Explorer


Theorem rexlimdv

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002) (Proof shortened by Eric Schmidt, 22-Dec-2006) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020)

Ref Expression
Hypothesis rexlimdv.1 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
Assertion rexlimdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdv.1 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
2 1 com3l ( 𝑥𝐴 → ( 𝜓 → ( 𝜑𝜒 ) ) )
3 2 rexlimiv ( ∃ 𝑥𝐴 𝜓 → ( 𝜑𝜒 ) )
4 3 com12 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )