Metamath Proof Explorer


Theorem rexlimdva

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007)

Ref Expression
Hypothesis rexlimdva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexlimdva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 ex ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 2 rexlimdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )