Metamath Proof Explorer


Theorem rexlimdva2

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis rexlimdva2.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
Assertion rexlimdva2 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdva2.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
2 1 exp31 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 2 rexlimdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )