Metamath Proof Explorer


Theorem rexlimdvaa

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypothesis rexlimdvaa.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜒 )
Assertion rexlimdvaa ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdvaa.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜒 )
2 1 expr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 rexlimdva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )