Description: Inference from Theorem 19.23 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexlimdvv.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) ) | |
| Assertion | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvv.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) ) | |
| 2 | 1 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝜓 → 𝜒 ) ) ) |
| 3 | 2 | rexlimdv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| 4 | 3 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜒 ) ) |