Metamath Proof Explorer


Theorem rexlimdvv

Description: Inference from Theorem 19.23 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004)

Ref Expression
Hypothesis rexlimdvv.1 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜓𝜒 ) ) )
Assertion rexlimdvv ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdvv.1 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜓𝜒 ) ) )
2 1 expdimp ( ( 𝜑𝑥𝐴 ) → ( 𝑦𝐵 → ( 𝜓𝜒 ) ) )
3 2 rexlimdv ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑦𝐵 𝜓𝜒 ) )
4 3 rexlimdva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵 𝜓𝜒 ) )