Metamath Proof Explorer


Theorem rexlimdvw

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis rexlimdvw.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rexlimdvw ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdvw.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 a1d ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 2 rexlimdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )