Metamath Proof Explorer
Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier
version). (Contributed by NM, 18-Dec-2006)
|
|
Ref |
Expression |
|
Hypothesis |
rexlimiva.1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) |
|
Assertion |
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexlimiva.1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) |
2 |
1
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
3 |
2
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |