Metamath Proof Explorer


Theorem rexlimiva

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006)

Ref Expression
Hypothesis rexlimiva.1 ( ( 𝑥𝐴𝜑 ) → 𝜓 )
Assertion rexlimiva ( ∃ 𝑥𝐴 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 rexlimiva.1 ( ( 𝑥𝐴𝜑 ) → 𝜓 )
2 1 ex ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 rexlimiv ( ∃ 𝑥𝐴 𝜑𝜓 )