Metamath Proof Explorer


Theorem rexlimivw

Description: Weaker version of rexlimiv . (Contributed by FL, 19-Sep-2011) (Proof shortened by Wolf Lammen, 23-Dec-2024)

Ref Expression
Hypothesis rexlimivw.1 ( 𝜑𝜓 )
Assertion rexlimivw ( ∃ 𝑥𝐴 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 rexlimivw.1 ( 𝜑𝜓 )
2 1 adantl ( ( 𝑥𝐴𝜑 ) → 𝜓 )
3 2 rexlimiva ( ∃ 𝑥𝐴 𝜑𝜓 )