Step |
Hyp |
Ref |
Expression |
1 |
|
renepnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ +∞ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≠ +∞ ) |
3 |
2
|
necon2bi |
⊢ ( 𝐴 = +∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
4 |
3
|
adantl |
⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
5 |
|
renemnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≠ -∞ ) |
7 |
6
|
necon2bi |
⊢ ( 𝐴 = -∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
9 |
4 8
|
jaoi |
⊢ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
10 |
|
renepnf |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≠ +∞ ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≠ +∞ ) |
12 |
11
|
necon2bi |
⊢ ( 𝐵 = +∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
13 |
12
|
adantl |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
14 |
|
renemnf |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≠ -∞ ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≠ -∞ ) |
16 |
15
|
necon2bi |
⊢ ( 𝐵 = -∞ → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
18 |
13 17
|
jaoi |
⊢ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
19 |
9 18
|
jaoi |
⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
20 |
19
|
con2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
21 |
20
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
22 |
7
|
adantl |
⊢ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
23 |
3
|
adantl |
⊢ ( ( 𝐵 < 0 ∧ 𝐴 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
24 |
22 23
|
jaoi |
⊢ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
25 |
16
|
adantl |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
26 |
12
|
adantl |
⊢ ( ( 𝐴 < 0 ∧ 𝐵 = +∞ ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
27 |
25 26
|
jaoi |
⊢ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
28 |
24 27
|
jaoi |
⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → ¬ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
29 |
28
|
con2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
30 |
29
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) ) |
31 |
21 30
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) ) |
32 |
31
|
ifeq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , ( 𝐴 · 𝐵 ) ) ) |
33 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
34 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
35 |
|
xmulval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
36 |
33 34 35
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
37 |
|
ifid |
⊢ if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , ( 𝐴 · 𝐵 ) , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) |
38 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐵 ) = ( 0 · 𝐵 ) ) |
39 |
|
mul02lem2 |
⊢ ( 𝐵 ∈ ℝ → ( 0 · 𝐵 ) = 0 ) |
40 |
39
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 · 𝐵 ) = 0 ) |
41 |
38 40
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) |
42 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 · 𝐵 ) = ( 𝐴 · 0 ) ) |
43 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
44 |
43
|
mul01d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) = 0 ) |
45 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 0 ) = 0 ) |
46 |
42 45
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) |
47 |
41 46
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 𝐴 · 𝐵 ) = 0 ) |
48 |
47
|
ifeq1da |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , ( 𝐴 · 𝐵 ) , ( 𝐴 · 𝐵 ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , ( 𝐴 · 𝐵 ) ) ) |
49 |
37 48
|
eqtr3id |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , ( 𝐴 · 𝐵 ) ) ) |
50 |
32 36 49
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |