Metamath Proof Explorer


Theorem rexn0

Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion rexn0 ( ∃ 𝑥𝐴 𝜑𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
2 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴 ¬ 𝜑 )
3 2 con3i ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅ )
4 1 3 sylbi ( ∃ 𝑥𝐴 𝜑 → ¬ 𝐴 = ∅ )
5 4 neqned ( ∃ 𝑥𝐴 𝜑𝐴 ≠ ∅ )