Metamath Proof Explorer


Theorem rexn0OLD

Description: Obsolete version of rexn0 as of 2-Sep-2024. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rexn0OLD ( ∃ 𝑥𝐴 𝜑𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝑥𝐴𝐴 ≠ ∅ )
2 1 a1d ( 𝑥𝐴 → ( 𝜑𝐴 ≠ ∅ ) )
3 2 rexlimiv ( ∃ 𝑥𝐴 𝜑𝐴 ≠ ∅ )