Metamath Proof Explorer


Theorem rexnal2

Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion rexnal2 ( ∃ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 rexnal ( ∃ 𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑦𝐵 𝜑 )
2 1 rexbii ( ∃ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐵 𝜑 )
3 rexnal ( ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐵 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 𝜑 )
4 2 3 bitri ( ∃ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 𝜑 )