Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | rexnal2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
2 | 1 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐵 𝜑 ) |
3 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
4 | 2 3 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |